Abdesselam - Data Scientist NLP

Ref : 191013B001
Email vérifié
  • Domicile

    91400 ORSAY

  • Profil

    Data Scientist (37 ans)

  • Mobilité
    Totalement mobile
  • Statut
    En cours d'immatriculation
  • Tarif Journalier Moyen
    Voir le tarif
Photo d'Abdesselam, Data Scientist NLP
Compétences
Expériences professionnelles
  • Le Mans - Paris R&D at SNCF and LIUM
    Jan 2017 - Jan 2017

    { Project
    - Text classification of SNCF documents. The task consists of assigning categories to text according
    to its content.The implemented system is based on LDA (Latent Dirichlet Allocation).
    Participants: SNCF and LIUM (Le Mans University).

    Technical environment: Scikit-learn, Python, TOM, NLTK, TreeTagger.
  • Teaching & Research Assistant

    Le Mans Lannion
    Jan 2015 - Jan 2017

  • R&D Engineer/PhD candidate (CIFRE contract)

    Jan 2012 - Jan 2015

    { Projects
    - Topic segmentation of TV Broadcast News The taskt consists in splitting the document into thematically homogeneous fragments (i.e : i.e. talking about a single subjec).
    Participants: Orange Labs and LIUM.
    Technical environment: Perl, Java, Lia-tagg, Boilerpipe, Word2vec.
    - Topic Titiling. The taskt consists in assigning a title to topic segments automatically extracted from
    TV Broadcast News. The implemented system is based on the similarity computation between a
    topic segment and newspaper articles in order to assign to the segment the title of the article that
    maximizes a similarity.
    Participants: Orange Labs and LIUM.
    Technical environment: Perl, Java, Lia-tagg, Boilerpipe, Word2vec.
    { Miscellaneous
    - Wrote 11 scientific papers: LREC 2018 (Japan), Interspeech 2017 (Sweden), ICASSP 2016 (China),
    Interspeech 2015 (Germany), ICASSP 2015 (Australia), TALN 2015 (France), Interspeech 2014
    (Singapore), ICASSP 2014 (Italy), JEP 2014 (France), SLSP 2013 (Spain), TALN 2013 (France)

  • * Detecting emotions in textual conversations. The task consists of classifying a given textual

    aujourd'hui

    dialogue into one of four emotion classes : Angry, Happy, Sad and Others. The implemented
    system is based on the combination of different deep neural networks techniques. In particular,
    we use Recurrent Neural Networks (LSTM, B-LSTM, GRU, B-GRU), Convolutional Neural
    Network (CNN) and Transfer Learning (TL) methods.
    Participants: EPITA and ADAPT Centre (Ireland).

    Technical environment: Keras, Python, NLTK, Gensim.
  • * Dialect Identification. The goal of this task is to classify a given text into one of 26 classes,

    aujourd'hui

    corresponding to various dialects of Arabic language. The implemented system based on
    Recurrent Neural Networks (BLSTM, BGRU) using hierarchical classification. We start with a
    higher level of classification (8 classes) and then the finer-grained classification (26 classes).
    Participants: EPITA and ADAPT Centre (Ireland).

    Technical environment: Keras, Python, NLTK, Gensim, Scikit-learn, twitterscraper.
  • * Sentiment Analysis.

    aujourd'hui

    The goal of this task task is to classify a given tweet into one of seven
    classes, corresponding to various levels of positive and negative sentiment intensity, that best
    represents the mental state of the tweeter.

    Technical environment: Keras, Python, NLTK, Gensim.
  • Chatbots (In progress)
    aujourd'hui

    . The goal of this task is to learn the machine to interact with users (i.e
    to simulate human conversation). Our baseline system based on seq2seq. Currently, we are
    applying the attention mechanism.
    Participants: EPITA and ADAPT Centre (Ireland).
    Miscellaneous
    { Giving computer science courses for Bachelor and Master degree classes in: Deep Learning for
    Natural Language Processing, Statistical Machine Learning.
    { Interns Mentored: Gael de Francony, Victor Guichard, Antoine Sainson, Hugo Linsenmair,
    Alexandre Majed, Xavier Cadet (students ING1, 3 months).
    { Wrote scientific papers: Semeval 2019 (USA), WANLP 2019 (Italy), Semeval 2018 (USA).

    Technical environment: Keras, Python, NLTK, Gensim, numpy.
Études et formations
  • from the French CNU 27 (informatics) Qualification

    2017
  • Ph.D. in computer science, France

    University of Maine
    2016
  • Master in Systemes Intelligents, ranked 2nd

    University Paris Dauphine
    2012
Autres compétences
Languages
English French Arabic
- Intermediate - Bilingual - Bilingual

Computer skills
Tools: Keras, Tensorflow, Pytorch, Multiboost, Scikit-learn, NLTK, Gensim, Lia-tagg, Lemur,
Lucene, Boilerpipe, JusText, Docker, Spacy.
Programming: Python, Java, C, Perl, Bash, HTML, PHP, JavaScript, XML.

D'autres freelances
Data Scientist PYTHON

Ces profils pourraient vous intéresser !
CV INGÉNIEUR STATISTICIEN / DATA ANALYST
Nader

INGÉNIEUR STATISTICIEN / DATA ANALYST

  • NANTERRE
SAS Microsoft Power BI SQL EXCEL R PYTHON GITLAB Tableau
Disponible
CV Data Scientist
Alioune

Data Scientist

  • LYON
PYTHON DATA BIG DATA AZURE SQL EXCEL SAS Microsoft Azure Machine Learning Deep Learning BUSINESS OBJECTS
Disponible
CV Data Scientist PYTHON
Benjamin

Data Scientist PYTHON

  • SAVERNE
PYTHON PyTorch Jupyter Notebook COMSOL MULTIPHYSICS
Disponible
CV Data Analyst
Abram

Data Analyst

  • PARIS
Microsoft Power BI SQL PYTHON EXCEL SAS JIRA R AZURE APACHE SPARK SQL SERVER
Disponible
CV Data Scientist PYTHON
Bahae-Eddine

Data Scientist PYTHON

  • LILLE
PYTHON DATA Data science Jupyter PyTorch Keras Deep Learning SQL AMAZON AWS LLM
Disponible
CV Data Scientist APACHE HADOOP
Safia

Data Scientist APACHE HADOOP

  • GARGENVILLE
PYTHON APACHE HADOOP DATA APACHE SPARK AZURE SCALA
Disponible
CV Data Scientist R/SAS
Maxence

Data Scientist R/SAS

  • PARIS
R RStudio DATA BIG DATA EXCEL Data science PYTHON SQL SAS PYSPARK
Disponible
CV Data Scientist PYTHON
Youssouf

Data Scientist PYTHON

  • VILLENEUVE-D'ASCQ
PYTHON EXCEL Cloud AWS SQL Microsoft Power BI Data science JAVA
Disponible
CV Data Scientis IA/LLM/RAG/NLP/VISION
Ameur

Data Scientis IA/LLM/RAG/NLP/VISION

  • VILLEJUIF
Unsupervised Learning Supervised Learning DATA LLM PYTHON Deep Learning TensorFlow Google Cloud Platform AZURE PyTorch
Disponible
CV Data Scientist et Analyst Excel Python
Bilal

Data Scientist et Analyst Excel Python

  • TOULON
EXCEL PYTHON TIBCO SPOTFIRE SQL
Disponible