Abdesselam - Data Scientist NLP

Ref : 191013B001
Email vérifié
  • Domicile

    91400 ORSAY

  • Profil

    Data Scientist (37 ans)

  • Mobilité
    Totalement mobile
  • Statut
    En cours d'immatriculation
  • Tarif Journalier Moyen
    Voir le tarif
Photo d'Abdesselam, Data Scientist NLP
Compétences
Expériences professionnelles
  • Le Mans - Paris R&D at SNCF and LIUM
    Jan 2017 - Jan 2017

    { Project
    - Text classification of SNCF documents. The task consists of assigning categories to text according
    to its content.The implemented system is based on LDA (Latent Dirichlet Allocation).
    Participants: SNCF and LIUM (Le Mans University).

    Technical environment: Scikit-learn, Python, TOM, NLTK, TreeTagger.
  • Teaching & Research Assistant

    Le Mans Lannion
    Jan 2015 - Jan 2017

  • R&D Engineer/PhD candidate (CIFRE contract)

    Jan 2012 - Jan 2015

    { Projects
    - Topic segmentation of TV Broadcast News The taskt consists in splitting the document into thematically homogeneous fragments (i.e : i.e. talking about a single subjec).
    Participants: Orange Labs and LIUM.
    Technical environment: Perl, Java, Lia-tagg, Boilerpipe, Word2vec.
    - Topic Titiling. The taskt consists in assigning a title to topic segments automatically extracted from
    TV Broadcast News. The implemented system is based on the similarity computation between a
    topic segment and newspaper articles in order to assign to the segment the title of the article that
    maximizes a similarity.
    Participants: Orange Labs and LIUM.
    Technical environment: Perl, Java, Lia-tagg, Boilerpipe, Word2vec.
    { Miscellaneous
    - Wrote 11 scientific papers: LREC 2018 (Japan), Interspeech 2017 (Sweden), ICASSP 2016 (China),
    Interspeech 2015 (Germany), ICASSP 2015 (Australia), TALN 2015 (France), Interspeech 2014
    (Singapore), ICASSP 2014 (Italy), JEP 2014 (France), SLSP 2013 (Spain), TALN 2013 (France)

  • * Detecting emotions in textual conversations. The task consists of classifying a given textual

    aujourd'hui

    dialogue into one of four emotion classes : Angry, Happy, Sad and Others. The implemented
    system is based on the combination of different deep neural networks techniques. In particular,
    we use Recurrent Neural Networks (LSTM, B-LSTM, GRU, B-GRU), Convolutional Neural
    Network (CNN) and Transfer Learning (TL) methods.
    Participants: EPITA and ADAPT Centre (Ireland).

    Technical environment: Keras, Python, NLTK, Gensim.
  • * Dialect Identification. The goal of this task is to classify a given text into one of 26 classes,

    aujourd'hui

    corresponding to various dialects of Arabic language. The implemented system based on
    Recurrent Neural Networks (BLSTM, BGRU) using hierarchical classification. We start with a
    higher level of classification (8 classes) and then the finer-grained classification (26 classes).
    Participants: EPITA and ADAPT Centre (Ireland).

    Technical environment: Keras, Python, NLTK, Gensim, Scikit-learn, twitterscraper.
  • * Sentiment Analysis.

    aujourd'hui

    The goal of this task task is to classify a given tweet into one of seven
    classes, corresponding to various levels of positive and negative sentiment intensity, that best
    represents the mental state of the tweeter.

    Technical environment: Keras, Python, NLTK, Gensim.
  • Chatbots (In progress)
    aujourd'hui

    . The goal of this task is to learn the machine to interact with users (i.e
    to simulate human conversation). Our baseline system based on seq2seq. Currently, we are
    applying the attention mechanism.
    Participants: EPITA and ADAPT Centre (Ireland).
    Miscellaneous
    { Giving computer science courses for Bachelor and Master degree classes in: Deep Learning for
    Natural Language Processing, Statistical Machine Learning.
    { Interns Mentored: Gael de Francony, Victor Guichard, Antoine Sainson, Hugo Linsenmair,
    Alexandre Majed, Xavier Cadet (students ING1, 3 months).
    { Wrote scientific papers: Semeval 2019 (USA), WANLP 2019 (Italy), Semeval 2018 (USA).

    Technical environment: Keras, Python, NLTK, Gensim, numpy.
Études et formations
  • from the French CNU 27 (informatics) Qualification

    2017
  • Ph.D. in computer science, France

    University of Maine
    2016
  • Master in Systemes Intelligents, ranked 2nd

    University Paris Dauphine
    2012
Autres compétences
Languages
English French Arabic
- Intermediate - Bilingual - Bilingual

Computer skills
Tools: Keras, Tensorflow, Pytorch, Multiboost, Scikit-learn, NLTK, Gensim, Lia-tagg, Lemur,
Lucene, Boilerpipe, JusText, Docker, Spacy.
Programming: Python, Java, C, Perl, Bash, HTML, PHP, JavaScript, XML.

D'autres freelances
Data Scientist PYTHON

Ces profils pourraient vous intéresser !
CV Data Analyst PYTHON
Nihal

Data Analyst PYTHON

  • BEZONS
DATA PYTHON Microsoft Power BI BIG DATA SQL
Disponible
CV Data Scientist PYTHON
Fousséni

Data Scientist PYTHON

  • CERGY
PYTHON DATA SQL BIG DATA SCALA EXCEL AZURE
Disponible
CV Data Analyst
Ilyass

Data Analyst

  • LYON
Looker DATAVIZ MYSQL Power BI PYTHON SQL QUERY MATLAB
Disponible
CV Data Scientist | PYTHON
Florian

Data Scientist | PYTHON

  • LE TAMPON
PYTHON DATA
Disponible
CV Data Scientist PYTHON
Camille

Data Scientist PYTHON

  • LE MANS
SAS SQL DATA Data science EXCEL PYTHON DATAVIZ
Bientôt disponible
CV Data Scientist Google Cloud Platform
Loïc

Data Scientist Google Cloud Platform

  • PARIS
SQL PYTHON Google Cloud Platform Cloud AWS DATA Dataiku BIGQUERY AZURE DEVOPS Rust
Disponible
CV Data Analyst PYTHON
Mohamed

Data Analyst PYTHON

  • LYON
PYTHON SAS R
Disponible
CV Business/Data Analyst
Saad

Business/Data Analyst

  • CRÉTEIL
SQL JIRA AGILE Microsoft Power BI DATA PYTHON
Disponible
CV Data Scientist - Docteur en statistique
Joseph

Data Scientist - Docteur en statistique

  • STRASBOURG
PYTHON DATA Data science Deep Learning
Disponible
CV Data Engineer Semarchy xDI
Amine

Data Engineer Semarchy xDI

  • ANTONY
PYTHON Microsoft Power BI SQL SEMARCHY EXCEL SQL SERVER APACHE SPARK TALEND
Disponible